
Improving Tweet Timeline Generation

by Predicting Optimal Retrieval Depth

Maram Hasanain1, Tamer Elsayed1, and Walid Magdy2

1 Computer Science and Engineering Department
College of Engineering, Qatar University, Doha, Qatar

{maram.hasanain,telsayed}@qu.edu.qa
2 Qatar Computing Research Institute, Doha, Qatar

wmagdy@qf.org.qa

Abstract. Tweet Timeline Generation (TTG) systems provide users
with informative and concise summaries of topics, as they developed
over time, in a retrospective manner. In order to produce a tweet time-
line that constitutes a summary of a given topic, a TTG system typically
retrieves a list of potentially-relevant tweets over which the timeline is
eventually generated. In such design, dependency of the performance of
the timeline generation step on that of the retrieval step is inevitable.
In this work, we aim at improving the performance of a given timeline
generation system by controlling the depth of the ranked list of retrieved
tweets considered in generating the timeline. We propose a supervised
approach in which we predict the optimal depth of the ranked tweet
list for a given topic by combining estimates of list quality computed at
di�erent depths.
We conducted our experiments on a recent TREC TTG test collection
of 243M tweets and 55 topics. We experimented with 14 di�erent re-
trieval models (used to retrieve the initial ranked list of tweets) and 3
di�erent TTG models (used to generate the �nal timeline). Our results
demonstrate the e�ectiveness of the proposed approach; it managed to
improve TTG performance over a strong baseline in 76% of the cases,
out of which 31% were statistically signi�cant, with no single signi�cant
degradation observed.

Keywords: Tweet summarization · Microblogs · Dynamic retrieval cut-
o� · Query di�culty · Query performance prediction · Regression.

1 Introduction

Coping with a �ood of user-generated content about ongoing events through the
online social media is getting more challenging over time. With several trending
topics of interest that are active simultaneously, losing track of some of them is
sometimes inevitable due to the large amount of posts compared to the limited
time. One potential solution is to have the ability to get a retrospective timeline
of posts that cover trending topics or events; Tweet Timeline Generation (TTG)
systems aim at addressing this problem [14].



2 M. Hasanain, T. Elsayed, and W. Magdy

TTG task is typically query-oriented. The user provides a query representing
the topic of interest and requires the TTG system to provide a list of tweets
that were posted prior to query time and that are both relevant to the topic and
non-redundant. This construction of the problem suggests a natural design of a
TTG system that consists of two consecutive steps. First, it retrieves a ranked
list of tweets that are potentially-relevant to the topic (called the retrieval step)
and then generates a timeline of non-redundant tweets out of that list (called
the timeline generation (TG) step). This design, in turn, imposes a natural
dependency of the quality of the generated timeline on the quality of the retrieved
list of tweets. Additionally, an important decision that a TTG system usually
makes is how many retrieved tweets (or in other words, which depth of the
retrieved ranked list) to start the timeline generation step with. Out of 13 teams
participated in the �rst o�ering of the TTG task at TREC-2014, at least 10
teams3 have used this design and 7 of them have used a static (i.e., �xed) depth
(or rank cuto�) of the retrieved tweets over all queries [14].

Figures 1 and 2 show how the performance of an example clustering-based
TTG system is sensitive to the depth of the retrieved list of tweets. Performance
is measured using weighted F1 (denoted by wF1) used as the o�cial evalaution
measure of the TTG task at TREC-2014 [14].

1
4

0

16
0

18
0

20
0

22
0

24
0

26
0

2
8

0

3
0

0

32
0

34
0

36
0

38
0

40
0

42
0

4
4

0

46
0

48
0

50
0

Retrieval Cutoff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

20 40 60 80

1
0

0

12
0

14
0

16
0

18
0

2
0

0

22
0

24
0

26
0

28
0

3
0

0

32
0

34
0

36
0

38
0

4
0

0

4
2

0

44
0

46
0

48
0

50
0

w
F1

Retrieval Cutoff

MB173 MB180

MB183 MB185

MB200 MB217

Average

Fig. 1. TTG performance using di�erent cuto�s over 6 TREC-2014 queries.

Figure 1 demonstrates this for 6 di�erent TREC-2014 queries and for the av-
erage performance over all queries as well. It shows that di�erent queries behave
di�erently in terms of the e�ect of changing retrieval depth on TTG perfromance.

Given 55 TREC-2014 queries, Figure 2 shows how an optimal per-query rank
cuto� can improve the performance over a static one by comparing the perfor-
mance of two oracle TTG systems: the �rst used the best global static cuto� (i.e.,
a �xed cuto� over all queries that maximizes the average performance, which
happened to be at depth 33), while the other used an optimal cuto� per query

3 No published work on the system design of the remaining 3 teams.



Improving Tweet Timeline Generation 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w
F1

Query

Optimal Cutoff

Best Static Cutoff (33)

Average w/Optimal Cutoff

Average w/Best Static Cutoff (33)

Fig. 2. E�ect of using Static vs. dynamic cuto�s on a TTG system performance.

(i.e., a di�erent cuto� per query that maximizes the performance of each query
separately). The �gure indicates that it is possible to achieve large improve-
ments, reaching 50%, by just dynamically selecting the right retrieval cuto� per
query, without any changes to neither the retrieval nor the TG components of
the system.

Motivated by the above observations, we address the problem of improving
the performance of a given TTG system by controlling the depth of the retrieved
list of tweets. We propose to tackle the problem by learning a regression model
that predicts optimal list depth needed to optimize the TTG performance. The
model is learned over features that estimate the retrieval quality at di�erent
depths of the list. The problem of estimating the performance of a retrieval
system given a query, called query performance prediction (QPP), has been
studied extensively [3] and had recently showed promising results in microblog
search [10, 18]. In this work, we leverage QPP techniques to predict a suitable
retrieval cuto� for a TTG query. To our knowledge, this is the �rst study that
leverages QPP for improving TTG or (more generally) tweet summarization
systems.

Our contribution is two-fold. First, we showed that the performance of TTG
systems is highly sensitive to the depth (and thus the quality) of the retrieved list
of tweets over which the timeline is generated. Second, we proposed a learning
framework that leverages QPP to improve the overall performance of any typical
TTG system that starts with the retrieval step.

The rest of the paper is organized as follows. In section 2, we summarize
the related work. We de�ne the problem in section 3. The proposed approach is
introduced in section 4. The experimental results are presented and discussed in
section 5 before we conclude and give some directions of future work in section 6.

2 Related Work

Several research studies have targeted the TTG problem and the more general
tweet summarization problem; many were part of the TTG task in TREC 2014



4 M. Hasanain, T. Elsayed, and W. Magdy

microblog track. There were also studies that investigated the performance pre-
diction of summarization systems. We touch upon those related directions in this
section.

2.1 Tweet Timeline Generation

Lv et al. [16] designed a TTG system that �rst applies hierarchical clustering
on the top k tweets from a ranked list retrieved for a query. The timeline is
then composed of the highest-scoring tweet from each cluster. Value of k was
determined di�erently per query using a static retrieval score threshold. Our
method allows both di�erent depth and score cuto�s across queries.

Xu et al. [22] applied set-based novelty detection over the top k tweets re-
trieved. A tweet is added to the novel set (and timeline) if its similarity with
any of the tweets in a sequentially-updated novel tweet set is below a threshold.
Magdy et al. [17] used 1NN clustering of the top k tweets to generate a timeline.
Their results show that the choice of the value of k can a�ect the TTG perfor-
mance. Similarly, Xu et al. [22] tuned the parameter k for their TTG system,
indicating that it had an e�ect on the performance.

Xiaohui et al. [4] also used the idea of clustering in TTG, but looking at
tweets in a di�erent way. They compute what they call a sequential pattern over
each tweet in an initially retrieved list of tweet. The pattern captures term co-
occurrence and semantics in the tweet. Once patterns are computed, the system
clusters tweets with similar patterns together and select the tweet with highest
retrieval score from each cluster to be added to the timeline.

2.2 Tweet Summarization

Shou et al. [19] employed an online incremental clustering algorithm with data
structures designed to maintain important cluster information as the tweet stream
evolves. Their system allowed for creating summarizes in two modes: online
where summaries are created based on current clusters in memory, and histor-
ical which creates summaries based on history of clusters maintained in a data
structure called Pyramidal Time Frame. In both modes, the system uses an al-
gorithm that constructs a cosine similarity graph between tweets in all clusters
then applies the LexRank method [8] to select most novel and central tweets to
add to the summary.

In a more recent work, Chen et al. [5] worked with tweets retrieved by a
search model which is similar to TTG but for the problem of tweet summariza-
tion. In their system, they classify tweets in the full list into genres and proceed
to summarize tweets in each genre. They re-enforce the per-genre list of tweets
by retrieving documents from the Web using a search query composed of terms
selected from that list of tweets. Each terms in the tweet list is weighted using
a measure that focuses on the authority of authors of tweets in which this term
appeared. Once those Web documents are retrieved, they are split into sentences
and added to the list of tweets (i.e., creating arti�cial tweets). A graph-based



Improving Tweet Timeline Generation 5

summarizer is then applied and top-scoring sentences/tweets are selected to cre-
ate the summary.

2.3 Predicting Summarization Performance

In another direction, Louis and Nenkova investigated the prediction of sum-
marization performance in the context of classical summarization tasks. They
attempted to use predictors computed on input documents to predict the perfor-
mance of summarization systems [15]. Some of these predictors are usually used
in predicting query performance in adhoc search tasks. They ran experiments
using single- and multi-document summarization and evaluated their approach
over a large set of training/testing datasets. Their results showed promising cor-
relation between predicted and actual summarization system performance. This
encouraged us to consider query performance prediction in the context of TTG,
not to predict TTG performance but to improve it by predicting the optimal
cuto� of a retrieved ranked list of tweets to start with.

Another line of studies investigated �nding the optimal cuto� for the ranked
list of results, but for the purpose of e�ective re-ranking techniques [12, 2]. How-
ever, that work focused on �nding the optimal global cuto� over all queries. In
our case, we predict the optimal cuto� per query.

3 Problem De�nition

Given a query q posted at time tq and a tweet collection C, TTG aims at gen-
erating a timeline T of non-redundant tweets that are relevant to q and posted
prior to tq. A TTG framework is usually composed of a retrieval component
(represented by a retrieval model) that provides a ranked list R of tweets that
are potentially-relevant to q, and a timeline generation (TG) component (repre-
sented by a TTG model) that accepts the list R and generates the tweet timeline
T extracted from the top k tweets in R. We address the problem of improving
the quality of T generated by a given TTG system by optimizing the cuto� value
k.

4 Approach

We formulate the problem as a learning problem. Given a query q and, a ranked
list R of tweets retrieved by a retrieval model, and a TTG model, we aim to
learn a regression model that estimates (or predicts) a cuto� value k applied to
R that is needed to optimize the TTG performance for q. k determines depth of
R to be used in generating the timeline.

4.1 Features

To train the regression model, we propose to leverage the idea of query perfor-
mance prediction (QPP). We compute a predictor for the query at m di�erent



6 M. Hasanain, T. Elsayed, and W. Magdy

cuto� (i.e., depth) values applied to R, resulting in m predicted values that
together constitute the feature set. Each predicted value (i.e., feature) is an es-
timation of the retrieval quality for q at the corresponding cuto�. Similarly, a
feature vector can be generated for each query in a query set Q, yielding a set of
Q feature vectors generated using the same retrieval model. Moreover, since dif-
ferent retrieval models can theoretically retrieve di�erent ranked lists of tweets
given the same query, the regression model can be trained using feature vectors
generated using di�erent retrieval models, which results in a larger set of feature
vectors.

Query performance predictors are usually computed using a list of documents
retrieved in response to the query using a retrieval model [3]. Several predictors
were proposed in microblog search context [18] in addition to those proposed in
other domains like news and Web search [6, 7, 20].

We experimented with 10 predictors including the most e�ective ones in
microblog search, in addition to e�ective predictors typically used with non-
microblog collections. We selected microblog-speci�c predictors computed based
on the following two measures of the topical-focus of Rk, the list composed of
the top k tweets in R. Each measure is computed per tweet in Rk [18]:

1. Query Terms Coverage (QTC): QTC computes the coverage of query terms
in the tweet, i.e., the number of query terms appeared in the tweet, and
normalize it by the length of the query.

2. Top Terms Coverage (TTC): Given the n most frequent terms in Rk, TTC
measures the coverage of these terms in the tweet normalized by n.

Once a measure is computed over each tweet in Rk, we compute mean, median,
lower percentile, and upper percentile of QTC/TTC values over all tweets in
Rk. Each one of these statistics represent a predictor. We also experimented
with variants to these predictors using inverse document frequencies (IDF) of
terms when computing the coverage.

As for typical predictors, we used the normalized query commitment (NQC)
due to its reported e�ectiveness over di�erent test collections [20].

4.2 Retrieval Models

We used retrieval approaches covering a large spectrum of e�ective techniques
usually used in microblog search. We group these approaches into the following
main groups:

� Standard query-likelihood (QL).
� Query Expansion (QE) models based on Pseudo Relevance Feedback (PRF).
� QE that bene�ts from web resources to select the expansion terms (QEW).
� Learning-to-rank (L2R)-based models. L2R models can also be combined
with other models such as QE.

� Temporal (TEMP) models that emphasize temporality of the data (tweets)
and the adhoc search task when performing retrieval.



Improving Tweet Timeline Generation 7

In total, we used 14 retrieval models. We acquired ranked results (i.e., tweets)
retrieved by these models using the 55 queries and dataset provided by the
TREC-2014 TTG task (further details in section 5) from 3 participated teams [22,
17, 9]. We evaluated the performance of the models using mean average preci-
sion (MAP), which is the commonly-used measure to evaluate microblog adhoc
search [14]. MAP was computed over the top 500 tweets per query. We summa-
rize the models used in Table 1.

Table 1. Summary of retrieval models used

Group ID MAP Group ID MAP

QL
QL1 [22] 0.385

QE+L2R

QEL [17] 0.470
QL2 [9] 0.398 HQEL [17] 0.482

QE

QE1 [17] 0.464 WQEL [22] 0.497
QE2 [9] 0.466 WQETL [22] 0.571
QE3 [9] 0.456

TEMP
TDC [9, 13] 0.406

QE4 [9] 0.490 TRM [9, 11] 0.445

QEW
HQE [17] 0.477
WQE [22] 0.485

4.3 TTG Models

We worked with TTG models selected from existing literature based on their re-
ported e�ectiveness, while attempting to diversify the types of considered mod-
els. We considered models based on two main concepts:

� Topical Clustering. TTG and tweets summarization systems based on topical
clustering were e�ective in related studies [9, 17, 19]. These models create
topical clusters for the input tweets assuming that each cluster re�ects a
sub-topic of the main topic. Some tweets from created clusters are selected
to form the timeline based on several factors including: a) which clusters to
represent in the timeline, b) number of tweets to select from each cluster
and c) a selection criterion that minimizes redundancy in the timeline.

� Temporal clustering [1]. It groups tweets of the input set (viewed as a stream)
considering temporal signals, usually extracted based on posting time of
tweets. The timeline is generated based on selecting tweets from these clus-
ters considering the same factors as in topical clustering.

We implemented and experimented with the following e�ective, existing TTG
models. Speci�cally, we implemented 1NN and Centroid which were the top
second and fourth TTG systems (respectively) in TREC-2014 TTG task of
the microblog track. Additionally, we implement a temporal TTG system.

� Centroid [9]: This model incrementally clusters the input tweet list by com-
puting similarity between the tweet and centroids of clusters updated with



8 M. Hasanain, T. Elsayed, and W. Magdy

each new tweet. The tweet with the maximum retrieval score is used as the
centroid of a cluster and it is included in the �nal timeline.

� 1NN [17]: Similar to Centroid, tweets are incrementally clustered, but model
only adds a tweet to a cluster if its similarity to any tweet in a cluster exceeds
a threshold, earliest tweet in each cluster is added to the timeline.

� Z-Score [1]: This is a model that considers temporal signals in tweets. The
model creates �xed-length time buckets of tweets given the ranked list sorted
chronologically. Each term in each bucket is scored using the Z-Score�a mea-
sure designed to help detect spiking terms in a bucket. A tweet in a bucket
is scored by summing the Z-Scores of all of its terms and the tweet with the
maximum score is included in the timeline.

4.4 Regression Models

We combine predictors computed at di�erent cuto�s using Weka's4 implementa-
tion of two regression models: typical linear regression and the M5P algorithm
that is based on generating model trees [21] . For the M5P model, we experi-
mented with both pruned and un-pruned trees.

5 Experimental Evaluation

5.1 Experimental Setup

Dataset In our experiments, we used TREC-2014 microblog track test collec-
tion, which includes access to Tweets2013 of 243 Million tweets and 55 queries [14].
For simplicity, we assume that we experiment with H adhoc retrieval models,
T TTG systems, and Q queries. Though the dataset used is relatively small, we
increase the size of training examples in our ground truth by using a large set
of adhoc models as discussed next.

Generating Ground Truth To generate our ground truth, we pre-identi�ed
the optimal retrieval cuto� for each query for each retrieval model by changing
the cuto� from 1 to 500 (with step 1 with cuto�s 1-100 and step 10 with 110-
5005), and identifying the one maximizing TTG performance. We repeat that for
each TTG system. The optimal cuto� values represent the target function that
the regression model is learning. Overall, the ground truth includes T ∗ H ∗ Q
samples (i.e., feature vectors).

We adopted weighted F1 (denoted by wF1) performance evaluation measure
that was the o�cial measure in TREC-2014 [14]. wF1 combines precision and
recall of the TTG system over a set of semantic clusters of relevant tweets to
query q. The retrieved clusters are weighted by the number of tweets in each

4 http://www.cs.waikato.ac.nz/ml/weka/
5 We observed that TTG performance is less sensitive to change in list depth with
large cuto�s



Improving Tweet Timeline Generation 9

cluster and the tweets themselves are weighted by their relevance grade where
�relevant� tweets get a weight of one and �highly-relevant� tweets get a weight of
two. Additionally, we report overall system performance by averaging per topic
wF1 over all queries to compute average wF1, which is a more accurate way than
the one used to compute reported TTG results in [14].

Training and Testing Data For training and testing our regression model,
we adopted leave-one-query-out cross validation. For each TTG system, we train
our model on Q − 1 queries and test it on the remaining unseen one query.
Since we have H retrieval models, for each query, we train a regression model
using (Q − 1) ∗H training samples and test it over 1 ∗H testing samples. The
trained model is used to predict the cuto� value for each unseen sample, which
is eventually used by the TTG system to generate a corresponding timeline. We
repeat that process Q times.

Baseline We compare the performance of our proposed approach with a baseline
that applies one optimal static cuto� to all queries. This baseline follows a similar
approach used by the best team at TREC TTG task to select the list depth by
learning a static score cuto� over training queries [16]. Our baseline system
learns the optimal static cuto� using a leave-one-query-out approach that is
similar to the one described above for the regression model. It is trained over
the same training set (i.e., Q − 1 queries) used to train the regression model
by changing the cuto� in the same way as above and picking the cuto� that
maximizes the average TTG performance while using it for all queries in the
training set. We then apply the learned cuto� to the remaining testing query.
This process is followed independently on each retrieval model and on each TTG
system. We believe this is a strong baseline as it bene�ts from the training data
to learn an optimal, but static, retrieval cuto�.

Statistical-signi�cance testing in our experiments was performed using two-
tailed paired t-test, with α = 0.05.

5.2 Results and Discussion

We studied 10 sets of features (one for each predictor) and two di�erent regres-
sion models. Additionally, using both regression models, we also attempted to
combine sets of features in an attempt to combine predictors used, but that re-
sulted in poorer performance with some TTG systems compared to using single
predictors. We suspect this is because of the small training/testing dataset we
have, impeding learning a regression model over such large set of features.

Due to space limitation, we only report the results of the best performing
setup using pruned M5P model trees and the feature set based on the IDF-
variant of lower percentile of TTC values described in section 4.

Averaging percent-improvement that our method achieved over the baseline
on all queries and retrieval models, our proposed approach improved for all of
the 3 TTG models. The overall percent-improvement ranges from 3.2% with the



10 M. Hasanain, T. Elsayed, and W. Magdy

Z-Score model to 6.8% with 1NN model; surprisingly, those models were the
worst and best performing respectively, according to the baseline results, among
the models we used.

Table 2 shows improved wF1 (denoted by wF
∗
1 ) and the percent-improvement

over baseline for each retrieval model used with each of the TTG models. In 32
out of 42 cases, our proposed approach improved over the baseline, reaching up
to 17% increase in wF1; 10 of those cases were statistically signi�cant, while
none of the cases where the performance dropped was statistically signi�cant.
Furthermore, the results demonstrate the strength of our method as it managed
to improve both systems with low and high TTG performance.

Table 2. Baseline wF1 for each TTG model with each retrieval model vs. improved
wF1 (wF ∗

1 ) along with the percent-improvement over baseline. Bold improvements are
statistically signi�cant.

Retrieval Centroid 1NN Z-score
Model wF1 wF ∗

1 (%) wF1 wF ∗
1 (%) wF1 wF ∗

1 (%)

QL1 0.3372 0.3783(+12.2) 0.3701 0.3697(−0.1) 0.3450 0.3204(−7.1)
QL2 0.3757 0.3809(+1.4) 0.3854 0.4102(+6.4) 0.3002 0.3373(+12.4)
QE1 0.3844 0.3898(+1.4) 0.3847 0.4117(+7.0) 0.3540 0.3754(+6.0)
QE2 0.3374 0.3779(+12.0) 0.3464 0.3814(+10.1) 0.2973 0.3405(+14.5)
QE3 0.3486 0.3659(+5.0) 0.3634 0.3673(+1.1) 0.3450 0.3204(−3.2)
QE4 0.3684 0.3774(+2.4) 0.3644 0.4057(+11.3) 0.3137 0.3587(+14.3)
HQE 0.3730 0.4069(+9.1) 0.3917 0.4282(+9.3) 0.3315 0.3752(+13.2)
WQE 0.3764 0.3748(−0.4) 0.3417 0.3774(+10.5) 0.3646 0.3621(−0.7)
QEL 0.3927 0.3928(+0.0) 0.3979 0.4105(+3.2) 0.3240 0.3801(+17.3)
HQEL 0.3962 0.4193(+5.8) 0.4089 0.4368(+6.8) 0.3709 0.3825(+3.1)
WQEL 0.3711 0.3672(−1.1) 0.3776 0.3954(+4.7) 0.3458 0.3602(+4.2)
WQETL 0.4068 0.3979(−2.2) 0.4011 0.4149(+3.4) 0.3965 0.3529(−11.0)
TDC 0.3777 0.3789(+0.3) 0.3845 0.4160(+8.2) 0.3561 0.3311(−7.0)
TRM 0.3326 0.3685(+10.8) 0.3219 0.3710(+15.2) 0.3129 0.2999(−4.2)

Finally, we went a step further and studied the relationship between the
di�erence in performance (between the proposed approach and the baseline) and
the optimal cuto� value per query. We compared the average optimal cuto� over
H retrieval runs and the average percent-improvement over the baseline over the
same H runs for di�erent queries and per TTG system. The results showed that
almost all queries of which performance was degraded have an average optimal
cuto� value that is ≤ 100. Moreover, at least 9 of the top 10 degraded queries (i.e,
the ones with largest degradation) have an average optimal cuto� value ≤ 50 in
all TTG systems. This is logical as the error in low cuto�s has a larger e�ect on
performance than in large cuto�s, because tweets at higher ranks are potentially
more relevent and therefore missing them becomes more costly. Another possible
reason is the general sensitivity of query performance predictors to the depth
of the retrieved list. Since the predictors (used as features) were not tuned per



Improving Tweet Timeline Generation 11

retrieval model, it might produce poor results at shallow lists in some cases. This
indicates that more attention should be given to features at the �rst 100 cuto�s
and possibly to a regression model that penalizes errors in queries of low optimal
cuto�s than in those of higher cuto�s. We also notice that almost all queries of
high optimal cuto�s (≥ 150) were improved in all TTG systems.

6 Conclusion and Future Work

In this work, we used query performance predictors to predict the optimal depth
of retrieval ranked list to use with a TTG system. Our results showed the ef-
fectiveness of this method in improving performance of 3 sample di�erent TTG
systems across 14 di�erent retrieval approaches. Out of 42 di�erent cases, 32
were improved with 10 of them had signi�cant improvement, while in only 10
cases TTG e�ectiveness was degraded but insigni�cantly.

For future work, more analysis of failure instances is needed especially for in-
stances where optimal cut-o�s are low. Other performance predictors can also be
tried and we plan to experiment with more regression models. Another evident
direction is to study how good the predictors are in predicting actual retrieval
performance and how is that related to their performance in predicting opti-
mal cuto� for TTG. With larger test collction (more importantly larger set of
queries), extensive experiments can be conducted for more concrete results.

Acknowledgments This work was made possible by NPRP grant# NPRP
6-1377-1-257 from the Qatar National Research Fund (a member of Qatar Foun-
dation). The statements made herein are solely the responsibility of the authors.

References

1. Alonso, O., Shiells, K.: Timelines as summaries of popular scheduled events. In:
Proceedings of the 22Nd International Conference onWorld WideWeb Companion.
pp. 1037�1044. WWW '13 Companion (2013)

2. Arampatzis, A., Kamps, J., Robertson, S.: Where to stop reading a ranked list?:
Threshold optimization using truncated score distributions. In: Proceedings of the
32Nd International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. pp. 524�531. SIGIR '09 (2009)

3. Carmel, D., Yom-Tov, E.: Estimating the Query Di�culty for Information Re-
trieval. Synthesis Lectures on Information Concepts, Retrieval, and Services 2(1),
1�89 (2010)

4. Chen, X., Tang, B., Chen, G.: BUPT_pris at TREC 2014 microblog track. TREC
'14 (2014)

5. Chen, Y., Zhang, X., Li, Z., Ng, J.P.: Search engine reinforced semi-supervised
classi�cation and graph-based summarization of microblogs. Neurocomputing 152,
274�286 (2015)

6. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. pp. 299�306. SIGIR '02 (2002)



12 M. Hasanain, T. Elsayed, and W. Magdy

7. Cummins, R.: Predicting query performance directly from score distributions. In:
Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H. (eds.) In-
formation Retrieval Technology, pp. 315�326. No. 7097 in Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg (Jan 2011)

8. Erkan, G., Radev, D.R.: Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Arti�cial Intelligence Research 22(1), 457�479 (2004)

9. Hasanain, M., Elsayed, T.: QU at TREC-2014: Online clustering with temporal
and topical expansion for tweet timeline generation. TREC '14 (2014)

10. Hasanain, M., Malhas, R., Elsayed, T.: Query performance prediction for microblog
search: A preliminary study. In: Proceedings of the First International Workshop
on Social Media Retrieval and Analysis. pp. 1�6. SoMeRA '14 (2014)

11. Keikha, M., Gerani, S., Crestani, F.: Time-based relevance models. In: Proceedings
of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval. pp. 1087�1088. SIGIR '11 (2011)

12. Lan, Y., Niu, S., Guo, J., Cheng, X.: Is top-k su�cient for ranking? In: Proceedings
of the 22Nd ACM International Conference on Conference on Information &#38;
Knowledge Management. pp. 1261�1270. CIKM '13 (2013)

13. Li, X., Croft, W.B.: Time-based language models. In: Proceedings of the Twelfth
International Conference on Information and Knowledge Management. pp. 469�
475. CIKM '03 (2003)

14. Lin, J., Efron, M., Wang, Y., Garrick, S.: Overview of the TREC-2014 Microblog
Track (Notebook Draft). TREC '14 (2014)

15. Louis, A., Nenkova, A.: Performance con�dence estimation for automatic summa-
rization. In: Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics. pp. 541�548. EACL '09 (2009)

16. Lv, C., Fan, F., Qiang, R., Fei, Y., Yang, J.: PKUICST at TREC 2014 microblog
track: Feature extraction for e�ective microblog search and adaptative clustering
algorithms for TTG. TREC '14 (2014)

17. Magdy, W., Gao, W., Elganainy, T., Zhongyu, W.: QCRI at TREC 2014:applying
the KISS principle for the TTG task in the microblog track. TREC '14 (2014)

18. Rodriguez Perez, J.A., Jose, J.M.: Predicting query performance in microblog re-
trieval. In: Proceedings of the 37th International ACM SIGIR Conference on Re-
search & Development in Information Retrieval. pp. 1183�1186. SIGIR '14 (2014)

19. Shou, L., Wang, Z., Chen, K., Chen, G.: Sumblr: Continuous summarization of
evolving tweet streams. In: Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval. pp. 533�542.
SIGIR '13 (2013)

20. Shtok, A., Kurland, O., Carmel, D., Raiber, F., Markovits, G.: Predicting query
performance by query-drift estimation. ACM Transactions on Information Systems
(TOIS) 30(2), 11:1�11:35 (2012)

21. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes.
In: Proceedings of the 9th European Conference on Machine Learning Poster Pa-
pers. ECML '97 (1997)

22. Xu, T., McNamee, P., Oard, D.W.: HLTCOE at TREC 2014: Microblog and clinical
decision support. TREC '14 (2014)


